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Previews

egies have been used to demonstrate the intracellularBreaking Down Tumor Defenses
activity of candidate molecules against BCL-2 survival
proteins, e.g., FRET analysis of associations with pro-
apoptotic proteins and generation of mutant BCL-XL

proteins resistant to small molecule inhibitors [6, 11].
BCL-2 antiapoptotic proteins are considered ripe tar-

Kitada and colleagues identified gossypol as a BCL-XLgets for anticancer drugs, yet only recently have small
inhibitor using a fluorescence polarization assay for dis-

molecule inhibitors emerged. Beccatini and colleagues
placement of a labeled BAD BH3 peptide [12]. Direct

[1] find a BCL-XL inhibitor in the guise of a familiar
evidence of gossypol binding to BCL-XL was obtained

natural product, gossypol. An analog, apogossypol, is
using two complementary NMR spectroscopy tech-

a relatively selective BCL-XL antagonist.
niques. One-dimensional diffusion-edited 1H spectra of
gossypol in the presence and absence of protein were

Current understanding of the cytotoxic effects of anti- consistent with low to submicromolar binding affinities.
neoplastic agents involves the activation of endogenous Chemical shift mapping of [15N,1H]-TROSY HSQC spec-
cell suicide programs (also known as apoptosis) by one tra showed broadening and loss of �1/3 of the reso-
or more damage-response pathways. The regulation of nance peaks with gossypol binding, including the BH3
apoptosis depends on the balance of pro- and antiapo- binding cleft. These results suggest that the protein con-
ptotic proteins within the cell. In particular, the BCL-2 formation changes with gossypol binding, as observed
protein family, encompassing both pro- and antiapo- for the cleft-opening BH3 peptides [13].
ptotic members, governs this important cell decision. A docking model of gossypol in the BCL-XL hydropho-
Basal expression of BCL-XL, a prominent antiapoptotic bic groove suggested that the reactive aldehyde func-
family member, has a strong negative correlation with tional groups could be removed without changing the
sensitivity to multiple classes of chemotherapeutics in binding configuration. Direct comparison of apogossy-
the 60 cell lines of the National Cancer Institute antican- pol showed a moderate decrease in BCL-XL binding
cer drug screen [2]. affinity (Ki 2.3 �M versus 0.3 �M) but similar cytotoxicity

The greatest hurdle for the development of BCL-2 profile compared with the parent compound. While bind-
inhibitors was thought to be the proven difficulty of in- ing assays are performed with soluble BCL-XL, it is im-
hibiting protein-protein associations with small mole- portant to remember that BCL-XL requires association
cules [3]. Structures of the BCL-2 family members deter- with lipid membranes for antiapoptotic function, and the
mined so far (BCL-2/BCL-XL, BCL-W, BAX, BID) contain membrane-inserted conformation has not been struc-
solvent-exposed hydrophobic grooves that bind to syn- turally characterized. Among the biological activities re-
thetic peptides derived from the conserved BH3 domain ported for gossypol, several (inhibition of lactate dehy-
in proapoptotic BCL-2 family proteins with submicromo- drogenase, erythrocyte anion transport, and spermicidal
lar to nanomolar affinities [4]. This peptide-protein asso- activity) are deficient in apogossypol. More extensive
ciation serves as a template for proposed structural structure-activity relationships will need to be devel-
models of dimers made up of proapoptotic and antiapo- oped to assess the specificity of apogossypol as a BCL-
ptotic BCL-2 proteins (Figure 1), generally understood XL inhibitor.
as a mechanism of sequestering proapoptotic proteins Beccatini and colleagues provide a window on the
intracellularly [5]. The peptide binding surface in the intracellular effects of apogossypol by observing rapid
hydrophobic cleft covers �1100 Å2, typical of protein- loss of mitochondrial localization of soluble proapo-
protein interfaces. Despite these reservations, both in ptotic BCL-G(S) protein fused to green fluorescent pro-
silico screening of compound databases and peptide- tein. This effect was not seen with expression of a mu-
based competitive binding assays have generated lead
compounds capable of dissociating BH3 peptides from
BCL-2 binding pockets [6, 7]. Notably, small molecule
inhibitors of BCL-XL pore-forming activity cannot dis-
place BH3 peptides, suggesting that there may be more
than one strategy for chemical inhibition of BCL-2 sur-
vival proteins [8].

A second (potentially insurmountable) barrier for ratio-
nal development of BCL-2 inhibitors is the lack of an
established molecular function for these survival pro-
teins. The large number of possible proapoptotic bind-
ing partners for BCL-2 has been progressively whittled
away, following the recognition that heterodimerization
could be induced by detergent [9]. Alternative modes
of action have also been proposed involving regulation
of different aspects of mitochondrial homeostasis [10]. Figure 1. Model of Dimer Interaction between Anti- and Proapo-

ptotic BCL-2 Family MembersIn place of a well-defined functional assay, several strat-
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molecules into well-defined complexes; and (3), nano-Nano-Tailoring:
scale redesigns, utilizing existent biogenic assembliesStitching Alterations of the proper dimension and altering their chemical com-

on Viral Coats position to attain a desired structure and/or function.
Viruses are intrinsically attractive scaffolds for nano-

scale constructions because they are predisposed for
self-assembly to form highly stable symmetrical struc-
tures with dimensions in the tens of nanometers. TheGrowing interest in utilizing protein assemblies for

nanomaterials applications has spawned efforts to detailed three-dimensional structures are often known
customize these scaffolds. Viral capsids have been from X-ray crystallography, and it is possible to intro-
modified with new chemical functionalities, typically duce specific positions of chemical reactivity on viral
at lysine or cysteine residues. Two innovative studies proteins through standard site-directed mutagenesis
describe approaches to introduce modifications at vi- protocols. Virions can even be produced cost effectively
rion tyrosine residues [1, 2]. on the gram scale. Self-assembly does not end at the

level of the individual capsid; in many cases, the viral
particles can be readily crystallized, even after modifica-The quest to create new nanometer-sized chemical ar-
tion, leading to organization of nanoblock arrays on thechitectures continues to accelerate, primarily along three
millimeter scale. A number of research groups are rap-broad trajectories: (1) top-down designs, using micro-
idly expanding the repertoire for nanochemistry on bio-lithographic and other techniques to embed increasingly
logical scaffolds [3]. Substantial effort has been devotedsmaller features into macroscopic materials; (2) bottom-
to utilizing biopolymers as templates for organized for-up designs, using the techniques of supramolecular chem-

istry to control the self-assembly of multiple constituent mation of inorganic materials [4, 5]. Recently, progress


